| Home | Trees | Indices | Help |
|
|---|
|
|
|
|||
| KeyedList | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
logger = logging.getLogger('Optimization')
|
|||
Imports: copy, sys, logging, scipy, KeyedList_mod, Utility, lmopt
|
|||
Nelder-Mead the cost over an arbitrary transform on the parameters.
m Model to minimize the cost for
params initial parameter estimate
xforms sequence of transforms (of length, len(params)) to apply to the
parameters before optimizing
invforms sequences of inverse transforms to get back to straight parameters
*args passed on to scipy.optimize.fmin
**kwargs passed on to scipy.optimize.fmin
For information on these, consult help(scipy.optimize.fmin)
|
Minimize the cost of a model using Levenberg-Marquadt in terms of log parameters. The *args and **kwargs represent additional parmeters that will be passed to the optimization algorithm. For your convenience, the docstring of that function is appended below: |
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Jun 3 10:15:00 2009 | http://epydoc.sourceforge.net |