|
|
|
|
|
add_compartment(self,
id,
initial_size=1.0,
name='',
typical_value=None,
is_constant=True,
is_optimizable=False)
Add a compartment to the Network. |
source code
|
|
|
add_species(self,
id,
compartment,
initial_conc=0,
name='',
typical_value=None,
is_boundary_condition=False,
is_constant=False,
is_optimizable=False,
uniprot_ids=set())
Add a species to the Network. |
source code
|
|
|
add_parameter(self,
id,
initial_value=1.0,
name='',
typical_value=None,
is_constant=True,
is_optimizable=True)
Add a parameter to the Network. |
source code
|
|
|
add_event(self,
id,
trigger,
event_assignments={},
delay=0,
name='',
buffer=0)
Add an event to the Network. |
source code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_checkIdUniqueness(self,
id)
Check whether a given id is already in use by this Network. |
source code
|
|
|
set_id(self,
id)
Set the id of this Network |
source code
|
|
|
|
|
set_name(self,
name)
Set the name of this Network |
source code
|
|
|
get_name(self)
Get the name of this Network. |
source code
|
|
|
set_deterministic(self)
Disables the stochastic simulation of network dynamics |
source code
|
|
|
set_stochastic(self,
seed=None,
fill_dt=None,
rmsd=None)
set_stochastic enables the stochastic simulation of the network
dynamics (instead of deterministic integration). |
source code
|
|
|
set_periodic(self,
period,
xtol=0.001,
maxfun=100,
phase=None,
minVel=None,
level=2,
log=False,
rel=False)
set_periodic ensures that a period solution has satisfactorily
approached a limit cycle before returning the solution. |
source code
|
|
|
_iter_limit_cycle(self,
params,
varNames,
s0)
Internal function used to integrate a trajectory and find the point
nearest the initial point (defined as the root sum squared distance)
in the period range of [0.475*tau, 1.5*tau]. |
source code
|
|
|
_eliminate_slowest_mode(self,
s0,
s1,
s2)
Internal function which finds and eliminates the slowest decaying
mode in the approach to a limit cycle:
si = [tau_i, x0_0, .., x0_i]
F0 = s_star + vector_1 + ... |
source code
|
|
|
_find_limit_cycle(self,
params)
Internal function to find a stable limit cycle (if one exists), given a
parameter set, an estimated period, and a set of initial conditions. |
source code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
integrate(self,
times,
params=None,
returnEvents=False,
addTimes=True,
rtol=None) |
source code
|
|
|
integrateSensitivity(self,
times,
params=None,
returnEvents=False,
addTimes=True,
rtol=None) |
source code
|
|
|
integrateStochastic(self,
times,
params=None) |
source code
|
|
|
_sub_for_piecewise(self,
expr,
time)
Runs through expr and replaces all piecewise expressions by the
clause that is currently active. |
source code
|
|
|
|
|
evaluate_expr(self,
expr,
time=0,
var_vals=None)
Evaluate the given expression using the current values of the network
variables. |
source code
|
|
|
set_var_typical_val(self,
id,
value)
Set the typical value for a variable. |
source code
|
|
|
get_var_typical_val(self,
id)
Return the typical value for a variable. |
source code
|
|
|
get_var_typical_vals(self)
Return the variable typical values as a KeyedList. |
source code
|
|
|
set_var_ic(self,
id,
value,
warn=True,
update_constants=True)
Set the initial condition of the variable with the given id. |
source code
|
|
|
get_var_ic(self,
id)
Return the initial condition for a variable |
source code
|
|
|
get_var_ics(self)
Return the variable initial conditions as a KeyedList |
source code
|
|
|
set_var_vals(self,
kl,
time=0)
Set current variable values from a KeyedList or dictionary. |
source code
|
|
|
get_var_val(self,
id)
Return the current value of a variable |
source code
|
|
|
|
|
get_initial_velocities(self)
Returns the vector field evaluated at the initial conditions |
source code
|
|
|
set_var_ics(self,
kl)
Set variable initial conditions from a KeyedList or dictionary. |
source code
|
|
|
set_var_val(self,
id,
val,
time=0,
warn=True,
do_assignments=True)
Set the current stored value of the variable with the given id. |
source code
|
|
|
setTypicalVariableValue(self,
id,
value)
Set the typical value for a variable. |
source code
|
|
|
get_variable(self,
id)
Return the class instance with a given variable id. |
source code
|
|
|
|
|
getInitialVariableValue(self,
id)
Return the initial condition for a variable |
source code
|
|
|
|
|
|
|
|
|
updateVariablesFromDynamicVars(self,
values,
time) |
source code
|
|
|
|
|
set_var_optimizable(self,
id,
is_optimizable) |
source code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_add_assignments_to_function_body(self,
body,
in_c=False,
include_dts=False)
Adds the assignment rules for this Network to the list of lines that
are in body. |
source code
|
|
|
fireEvent(self,
event,
dynamicVarValues,
time) |
source code
|
|
|
executeEvent(self,
event,
time_fired,
y_fired,
y_current,
time_current) |
source code
|
|
|
|
|
executeEventAndUpdateSens(self,
holder,
ysens_pre_exec,
opt_var) |
source code
|
|
|
_makeCrossReferences(self)
Create the cross-reference lists for the Network. |
source code
|
|
|
disable_deriv_funcs(self)
Disables the creation of derivative functions, which can speed up
integration. |
source code
|
|
|
enable_deriv_funcs(self)
Enables the creation of derivative functions, which allows
sensitivity integration and may speed up normal integration
as well. |
source code
|
|
|
compile(self,
disable_c=None)
Create the dynamically-generated functions for this Network. |
source code
|
|
|
|
|
exec_dynamic_functions(self,
disable_c=False,
del_c_files=True,
curr_c_code=None) |
source code
|
|
|
|
|
|
|
run_f2py(self,
mod_name,
hide_f2py_output=True) |
source code
|
|
|
|
|
takeDerivative(self,
input,
wrt,
vars_used=None,
simplify=True)
Take the derivative of a math expression wrt a given variable id. |
source code
|
|
|
copy(self,
new_id=None,
new_name=None)
Return a copy of the given network, with an optional new id. |
source code
|
|
|
|
|
|
|
get_component_name(self,
id,
TeX_form=False)
Return a components's name if it exists, else just return its id. |
source code
|
|
|
|
|
addCompartment(self,
id,
size=1.0,
name='',
typicalValue=False,
isConstant=True,
isOptimizable=False) |
source code
|
|
|
|
|
addSpecies(self,
id,
compartment,
initialConcentration=None,
name='',
typicalValue=None,
is_boundary_condition=False,
isConstant=False,
isOptimizable=False,
uniprot_ids=set()) |
source code
|
|
|
addParameter(self,
id,
value=0.0,
typicalValue=None,
name='',
isConstant=True,
isOptimizable=True) |
source code
|
|
|
|
|
|
|
|
|
set_initial_var_value(self,
id,
value,
warn=True,
update_constants=True)
Set the initial condition of the variable with the given id. |
source code
|
|
|
setInitialVariableValue(self,
id,
value,
warn=True,
update_constants=True)
Set the initial condition of the variable with the given id. |
source code
|
|
|
|
|
addEvent(self,
id,
trigger,
eventAssignments,
delay=0,
name='') |
source code
|
|
|
addConstraint(self,
id,
trigger,
message=None,
name='') |
source code
|
|
|
|
|
|