Contents

SloppyCell User Documentation

Revision : 1.2

June 3, 2009

1 JAK-STAT Example

1.1

Other Examples

2 Overview

2.1 Working Interactively
2.2 Accessing SloppyCell
2.3 Networks
2.4 Dynamics e
2.5 Models

2.5.1 Priors
2.6 Experiments

2.6.1 Scale Factors

2.6.2 Data Format
2.7 Optimization
2.8 Cost and Residual Derivatives 0oL
2.9 Ensembles

2.9.1 Assessing and Speeding Convergence

2.9.2 Predicting from an Ensembleo 00000
2.10 Plotting
211 KeyedLists 0 o o
2.12 Input and Output
2.13 Miscellaneous Utilities
2.14 Parallelization

3 Installation

3.1 Required Dependencies
3.2 Optional Dependencies
3.3 OnLinux
34 OS X .

o W

3.4.1 Pre-built binary 18

3.4.2 Fromsource code 18

3.5 Windows 18
3.5.1 Pre-built binaryo 18

3.5.2 Fromsource codeo 18

3.6 Testing the Installation 0oL 18

4 Troubleshooting 19
4.1 Failing Integrationso 19

Welcome to SloppyCell!

SloppyCell is a software environment for building and analyzing computational models
of many-parameter complex systems. To date, our focus has been on biochemical network
models based on the Systems Biology Markup Language (SBML) [1]. Many of the techniques
and much of the code is, however, applicable to other types of models.

SloppyCell’s goal is to provide a flexible environment that facilitates interactive ex-
ploratory model development while also remaining efficient for computation-intensive
analyses. This goal is facilitated by our use of the computing language Python
(http://www.python.org) for both writing and driving SloppyCell. SloppyCell scripts are
Python programs, but please don’t let that frighten you. Python has proved easy to learn and
there are numerous tutorials (e.g. http://wiki.python.org/moin/BeginnersGuide) and
useful books [2]. An excellent introduction to Python in the context of scientific computing
is the May/June issue of Computing in Science and Engineering.

SloppyCell’s development has been driven by the research interests of the Sethna group.
For examples of the types of analysis we do, see our papers [3, 4, 5, 6, 7, 8, 9, 10].

This document opens begins with an example application, followed by a high-level
overview of SloppyCell’s architecture. We then delve into additional features and instal-
lation (Section 3), and we close with some troubleshooting.

Note: If you are using a binary installer, you will still want to download the source
distribution (as described in Section 3.6) so that you will have access to the Example and
Doc directories.

1 JAK-STAT Example

Here we consider an example application using the JAK-STAT model of Swameye et al. [11],
which was also used as an example by the SBML Parameter Estimation Toolkit (SBML-
PET) [12].

Using the script shown in Listing 1, we’ll fit the model, build an ensemble, and then
estimate some prediction uncertainties, reproducing most of the Figure from [13]. (This
script is also found in the Example/JAK-STAT directory of the SloppyCell source distribution.)
Some of the concepts may be a little subtle, so don’t be afraid to turn to any section in the
Overview and come back here.

Lines 1 through 3 import code from the Python packages we’ll use this session: mat-
plotlib, SciPy, and SloppyCell.

On line 5 we load the model network from the SBML file. (Note that this file has been
modified from the one included with SBML-PET to fix some bugs in it and to define the
species ’datal’ and ’data2’ which correspond to the measurements we’ll fit.) Given the
space constraints for listings here, the Experiment object is defined in another file, which
we import on line 8. We use that Experiment, along with our previously created Network,
to create the Model object on the following line.

Our initial parameters are defined as a KeyedList starting on line 11. We could have
specified them as a simple list, without the names, but we find things are much clearer

http://www.python.org
http://wiki.python.org/moin/BeginnersGuide

10

15

20

25

30

35

40

45

50

from pylab import x*
from scipy import x
from SloppyCell.ReactionNetworks import x

net = I0.from_SBML_file ("JAK-STAT_SC.xml’, ’netl’)
net.set_var_ic(’vl’, 'v1.0’) # Won’t need given initial assignments.

S A T S S

import JAK_expt
m = Model ([JAK _expt.expt], [net])

params = KeyedList ([(’r1’, 0.5), (’'r3’, 2), (’tao’, 6.0), #
(’r4_07, 1.35), ('v1.0’, 1.19)])

res = Residuals.PriorInLog(’r3_prior’, ’r3’, 0, sqrt(log(led))) #

m. AddResidual(res)

res = Residuals.PriorInLog(’tao_prior’, ’tao’, log(4), sqrt(log(4)))

m. AddResidual(res)

print ’Initial cost:’, m.cost (params)

params = Optimization.fmin_lm_log_params(m, params, maxiter=20, disp=False) #

print ’Optimized cost:’, m.cost (params)

print ’Optimized parameters:’, params

Plot our optimal fit.

figure ()

Plotting . plot-model_results (m)

j = m.jacobian_log_params_sens (log (params))

jtj = dot(transpose(j), j) #

print ’Beginning ensemble calculation .’
ens, gs, r = Ensembles.ensemble_log_params (m, asarray (params), jtj, steps=T7500)#
print ’Finished ensemble calculation .’

pruned_ens = asarray(ens[::25]) #
figure ()
hist (log (pruned_ens|[:,1]), normed=True) #

times = linspace(0, 65, 100)
traj_set = Ensembles.ensemble_trajs(net, times, pruned_ens) #
lower , upper = Ensembles. traj_ensemble_quantiles(traj_set , (0.025, 0.975))

figure ()

plot (times, lower.get_var_traj(’frac_v3
plot (times, upper.get_var_traj(’frac_-v3
plot (times, lower.get_var_traj(’frac_v4
plot (times, upper.get_var_traj(’frac_v4

— — — —

show ()

Listing 1: This script reproduces some of the results from [13]. For detailed comments see

Section 1.

1.2

e e datal in netl for exptl

[| e e data2innetl for exptl

0.4 Fy [}
0.2

o.0f

Figure 1: Plotted is the optimal fit for our example model, generated using
Plotting.plot_model_results(m) in Listing 1.

when the names are visible as well.

A couple of priors need to be defined to keep model parameters from drifting too far.
The prior on ’r3’ (line 14) constrains it (within 95% probability) to lie between 10~* and
10*, while the prior on ’tao’ constrains it to lie between 1 and 16.

The initial cost is about 560, which is very high given that we only have 32 data points.
Thus we run several iterations of Levenberg-Marquardt on line 20. (We limit the number
of iterations here merely for expediency. This number gets us very close to the actual
minimum.) The final cost should be about 18.2. For a perfectly fitting model, we expect
a cost of 1/2 the number of data points, so this cost indicates a good fit. On line 26 we
generate Figure 1, which compares our best fit with the data.

Our group’s philosophy is, however, not to trust solely in the best fit, so we’d like to build
an ensemble of parameters. Before we can build an ensemble, we need to build a matrix to
guide the sampling. Here we use the J'J approximation to the Hessian, which we calculate
on lines 28 and 29. (As an aside, the eigenvalues and eigenvectors of this J'.J are ‘sloppy’,
as with the models discussed in [3, 6, 8].)

On line 32 we build a parameter ensemble. We only build a 7500 step ensemble because
the model is quite small and well-constrained; with 5 parameters the correlation time should
be only about 25 steps. Also, we cast the params KeyedList to an array in the call; this
makes our returned ens be composed of arrays rather than KeyedLists, which is more
memory efficient. Calculating a 7500 member ensemble for this model takes approximately
15 minutes on a modern PC. On line 35 we prune the ensemble; using slicing notation to
take every 25th element (25 being the correlation time). We also convert to an array, so that
we can use the more powerful slice syntax of arrays.

What does the ensemble actually look like? On line 38, we use matplotlib’s hist function
to build a histogram of the logarithm of ’r3’ over the ensemble. The result is shown in

Figure 2: Shown is a histogram of log *r3’ for the JAK-STAT ensemble. Note that the
value of *r3’ is bounded from below at about 10°, but the upper end is only bounded by
the prior.

figure 2. Note that the upper bound on ’r3’ is set by the prior we added, while the lower
bound is constrained by fitting the data.

Once we have our ensemble, we can make some predictions. On line 41 we calculate
trajectories for net over our pruned ensemble, and on the following line we generate lower
and upper trajectories that bound the central 95% of the values for each variable. We then
plot these bounds for the variables >frac_v3’ and ’frac_v4’, which have been defined to
be ’2%v3/v1’ and ’2*v4/v1’ respectively. These are the fractions of total STAT that are
involved in cytoplasmic and nuclear dimers. Figure 3 shows the resulting figure. Note the
relatively large uncertainty of the cytoplasmic dimers (green), which gets very close to zero.

Finally, we end our script with a call to show(). This pylab command ensures that the
plots pop up. It may be unnecessary if you're running the script from within an IPython
session started with the -pylab command-line option.

1.1 Other Examples

The JAK-STAT example presented here covers the most basic of SloppyCell’s functionality.
More extensive examples can be found in the Examples directory of the source distribution.

2 Overview

2.1 Working Interactively

Python is an interpreted language, which means that there is no compile step between writing
and running the code. Thus Python can be used interactively, and this is one of its greatest

0.40

0.35

0.25

0.20

0.10

0.05

40 50

60 70

Figure 3: In green is the 95% uncertainty bound on cytoplasmic dimers, while blue is the
95% bound on nuclear dimers, given the model and data that have been fit.

Optimization
\
\

4

7/

Y

Model

/SN

Network

Experiment

Figure 4: The architecture of some of the primary SloppyCell tools is illustrated here. Model,
Network, and Experiment are classes, and a model is composed of one or more Networks and
Experiments. The oval boxes represent modules (collections of functions) and the dotted
arrows indicated the class of objects they primarily act upon.

strengths, particularly when used with the enhanced IPython shell [14].

A typical pattern for working with SloppyCell is to have one window running the IPython
shell and another open to your favorite text editor. Commands can be directly typed and
run in the shell, and when the results are satisfactory they can be recorded into a .py script
using the text editor. This pattern is particularly powerful when used with I[Python’s ‘magic’
Jrun and %run -i commands, which allow external scripts to be run as if all their commands
were typed into the shell.

The interactive nature of Python is also important for getting help. Information and
useful documentation can be accessed about any object using help(<object>), and all the
attributes (data and methods) of an object can be listed using dir(<object>). IPython
makes such exploration even more powerful, as it offers <tab> completion of object attributes.
For example, to see all the method of the object net that begin with calc, one would type
net.calc<tab>.

Rather than expounding upon the details of every function and method in SloppyCell,
this document will focus on a higher-level description. Our aim here is to show you what
SloppyCell can do and where to look for that functionality. Once you have that, the inter-
active help should guide you on how exactly the functions work.

2.2 Accessing SloppyCell
To access the tools provided by SloppyCell, most user scripts should have

from SloppyCell .ReactionNetworks import
near the top of the script. This imports most of SloppyCell’s modules into the top-level
namespace where they can be easily accessed.

2.3 Networks

At the heart of most SloppyCell projects is a collection of Network objects. A Network
describes a set of chemical species, their interactions, and a particular set of exper-
imental conditions. SloppyCell’s Networks are based on the SBML Level 2, Version
3 specification (http://sbml.org/documents/). A concise and mostly complete sum-
mary of this specification can be found in the paper by Hucka et al. [1] (available from
http://sbml.org/documents/).

Briefly, an SBML network consists of species (that exist inside compartments) whose
dynamics are controlled by reactions and rules (assignment, rate, algebraic, initial assign-
ment). A network also describes parameters which typically quantify the interactions, and
events which cause discontinuous changes in model components given specified triggers. A
network can also specify mathematical function definitions for use in other expressions.

Networks are constructed simply as

net = Network(’example’).
All the SBML components are added to a network using methods that begin with add, e.g.

net.add_parameter(’kf’, 0, is_optimizable=True).

8

http://sbml.org/documents/
http://sbml.org/documents/

This example shows one additional attribute SloppyCell assigns to parameters; if they are
constant, they can additionally be declared optimizable. When Networks are composed
into a Model, the optimizable parameters are exposed at the Model level so they can be
tweaked by optimization algorithms or when building an ensemble.

Often one wishes to study several slight modifications to a single Network. To that end,
Networks have a copy method.

SloppyCell supports most of the current SBML specification, but there are some ex-
ceptions. First, SloppyCell does no processing of units. It is assumed that all numerical
quantities in the Network have compatible units. Second, we don’t support delay elements
in math expressions. (Delays in event execution times are supported.) Finally, because we
often take analytic derivatives of the equations, using discontinuous functions (e.g. abs () or
ceil()) in the math for reactions or rules will cause integration problems. Discontinuities
should be coded using events, and it is supported to use piecewise in the event assignments.

2.4 Dynamics

The Dynamics module contains methods to integrate a Network’s equations. The most
basic functionality is Dynamics.integrate which simply integrates a model’s differential
equations forward in time and returns a Trajectory object containing the result.

Also quite useful is Dynamics.integrate_sensitivity, which returns a Trajectory ob-
ject containing the sensitivity trajectories. These trajectories are dy(t, 8)/06;, the derivatives
of a given variable at a given time with respect to a given optimizable variable (indexed by
e.g. (y, theta_i)). These trajectories are useful for optimizing parameters or experimental
designs.

Finally, SloppyCell implements basic fixed-point finding in
Dynamics.dyn_var_fixed_point.

2.5 Models

A Model object unites one or more Networks with the data contained in one or more
Experiments:

m = Model([<list of expts>], [<list of nets>])
A Model’s primary task is to calculate the cost C' for a set of parameters 6, defined as:

cEy=+3 (W)z + priors. (1)

, o)

(2
Here y;(0) is the model prediction, given parameters 6, corresponding to data point d;, and
0; is the uncertainty of that data point. The B; are scale factors which account for data
that are only relative, not absolute, measurements (e.g. Western blots). See Section 2.6.1
for more on scale factors. The ‘priors’ term in the costs represents additional components of
the cost, often designed to steer parameters in particular directions.

2.5.1 Priors

Often it is useful to add additional ‘prior’ terms to the cost. These may reflect previous
direct measurements of a particular parameter, or restrict them to physically reasonable
values. Prior terms are added using m.add_residual (res) where res is a Residual object.
By far the most common form of additional residual we use is Residuals.PriorInLog. Such
a residual adds a term to the cost of the form:

1 (log8; —log 0} 2
(et)

Olog 6;

This acts to keep the logarithm of parameter ¢; from deviating much more than oo, from
log 67

2.6 Experiments

An Experiment object contains describes a set of data and how it should be compared with
a set of Networkss.

2.6.1 Scale Factors

Each Experiment defines a set of measurements in which all measurements of the same
quantity share a scale factor. Scale factors are important for many forms of biological data
which do not give absolute measurements. For example, the intensity of a band in a Western
blot is proportional to the concentration of that protein in the sample, but converting it
to an absolute value may be very difficult to do reliably. The optimal conversion factor
for comparison to a given set of Network results is, however, easy to calculate analytically
and need not be included as an extra fitting parameter. For historical reasons, by default
SloppyCell assumes that all data involve scale factors that should be optimized. If you know
the absolute scale of your data, use expt.set_fixed_sf to specify fized scale factors. Or,
if you know that two variables should share a scale factor which needs to be optimized, use
expt.set_shared_sf.

Because SloppyCell handles the scale factors implicitly, when building an ensemble we
must account for their fluctuations by using a free energy rather than the previously men-
tioned cost. This free energy depends on prior assumptions about how the scale factors
are distributed, and these priors can be changed using expt.set_sf_priors. For more on
possible effects and subtleties of choosing these priors, see [10, Section 6.2].

2.6.2 Data Format

SloppyCell’s data format is simply a set of nested Python dictionaries or KeyedLists. This
can be unwieldy to write out by hand, but it provides flexibility for future addition of more
complex forms of data, and it can easily be generated from other tables by simple scripts.
The first level of nesting in the experimental data is keyed by the id of the Network whose

10

expt.set_data({’net1’:{’X’: {2.0: (2.85, 0.29),
.0: (4.9, 0.49),
(1.25, 0.13),
(1.12, 0.13),

},
‘net2’:{’X’: {2.0: (6.7, 0.3),
4.2: (9.8, 0.2),

}
)

Listing 2: Shown is an example of SloppyCell’s data format. This data set contains data on
the species with ids X’ and 'Y’ taken under two conditions corresponding to the Networks
with ids ’netl1’ and ’net2’. Importantly, the two conditions by default share a floating
scale factor for *X’.

results the data should be compared with, and the next level is keyed by the variable the
data refers to. The final level is a dictionary or KeyedList of data-points, mapping times to
tuples of (<value>, <one-sigma uncertainty>).

The data format is best illustrated by example; see Listing 2. This Experiment contains
data on two variables X’ and ’Y’ in two conditions, corresponding to the Networks ’net1’
and ’net2’. Note that, because they are in the same experiment, the two data sets on ’X’
will be fit using the same scale factor. This might be appropriate, for example, if the data
came from Western blots using very similar numbers of cells and the same antibody.

2.7 Optimization

After the Model has been created, it is very common to want to optimize the parameters # to
minimize the cost and thus best fit the data. SloppyCell includes several optimization rou-
tines in the Optimization module. These include wrappers around SciPy’s Nelder-Mead and
conjugate gradient routines and SloppyCell’s own implementation of Levenberg-Marquardt.
The conjugate gradient and Levenberg-Marquardt routines use analytical derivatives calcu-
lated via sensitivity integration, and all the routines have versions for both logarithmic and
bare parameters.

All the currently implemented methods do only local optimization, but minimizing the
cost using any Python-based minimization algorithm is straight-forward. To further explore
parameter space, consider building a parameter ensemble (Section 2.9).

11

2.8 Cost and Residual Derivatives

In both optimization and ensemble building, various derivatives of the cost function are very
useful. These are all available using methods of the Model object, and in each case there are
versions for logarithmic and bare parameters. Using sensitivity integration, we can calculate
all first derivatives semi-analytically, without reliance on finite-difference derivatives and the
resulting loss of precision.

Most basic derivative is the gradient of the cost which is useful for many deterministic
optimization algorithms.

A slightly more complicated object is the Jacobian .J, which is the derivative matrix of
residuals versus parameters: J;; = dr;/df;. (The cost we consider (Equation 1) is a sum
of squared residuals: C(#) = 1>, 7:(6)?). The Jacobian is useful for understanding which
parameters impact which features of the fit and for clustering parameters into redundant
sets [15].

Finally, the Hessian H is the second derivative matrix of the cost: H;; = dC(6)/d0;df;. If
calculated at a minimum of the cost, the Hessian describes the local shape of the cost basin.
This makes it useful for importance sampling when building an ensemble (Section 2.9). Note,
however, that Hessian calculation relies on finite-difference derivatives, which can be difficult
to calculate reliably. For our least-squares cost functions, a very useful approximation to the

Hessian is J'.J, which can be calculated as:

j = m.Jacobian_log_params_sens (log(params))
jtj = dot(transpose(j), j)
The approximation becomes exact when the model fits the data perfectly.

2.9 Ensembles

To explore the full nonlinear space of parameters that are statistically consistent with the
model and the data, we build a Bayesian ensemble where the relative likelihood of any

parameter set 6 is:
P(0) oc exp (=G (0,T)/T). (3)

Here G(0,T) is the free energy, which is the cost plus a possible contribution due to fluctu-
ations in scale factors. The temperature T controls how much we’re willing to let the free
energy deviate from the optimum. For strict statistical correctness, it should be one, but
there are situations in which it is useful to adjust user larger values [5].

The ensemble is built using Ensembles.ensemble_log_params, using an importance-
sampled Markov-Chain Monte-Carlo algorithm [16]. This algorithm builds the ensemble
by taking a random walk through parameter space which, eventually, will converge to the
correct probability distribution.

2.9.1 Assessing and Speeding Convergence

‘Eventually’ is a key word in describing ensemble convergence. Because we are taking a
walk through parameter space, subsequent members of the ensemble are highly correlated.

12

1.0 I I 1

0.5 .

Autocorrelation

'0'50 50 100 150 200

Attempted steps

Figure 5: Shown are autocorrelation functions functions for the cost (blue) and the logarithm
of a particular parameter (green) in an ensemble built for the small JAK-STAT example
model (Section 1). The correlation time for both is about 25 steps, suggesting that parameter
sets 25 steps apart are statistically independent.

Generating a thoroughly converged ensemble that independently samples the distribution of
parameters many times can be quite computationally intensive for large models.

There are several ways to assess convergence. Most thorough (but computationally ex-
pensive) is to start several ensembles from very different initial parameters and see that they
give identical answers for your predictions.

Given a single ensemble, one can check for convergence using the autocorrelation func-
tion of the cost and logarithms of the parameter values using Ensembles.autocorrelation.
Figure 5 shows example autocorrelation functions for a small model. The number of inde-
pendent samples in an ensemble is approximately the length of the ensemble divided by the
longest correlation time of any parameter in the ensemble. Scaling arguments suggest that,
for the default ensemble parameters, the number of steps in one autocorrelation time is at
least the square of the number of parameters [10, Section 3.5.1].

If the correlation time for your ensemble is much longer than the square of the number
of parameters, your cost basin is probably substantially curved. For advice on how to deal
with this, see Section [10, Section 6.3].

2.9.2 Predicting from an Ensemble

Once your ensemble has converged, you're ready to make predictions. As a first
step, you’ll probably want to prune your ensemble. As mentioned previously, con-
secutive members of the ensemble are not independent, and it is independent sam-
ples that matter for predictions. Once you've estimated the longest correlation time
(corr_steps), the ensemble can be pruned simply by taking one member per correlation
time: ens_pruned = ens[::corr_steps].

To calculate uncertainties for any quantity over the ensemble, simply calculate its value

13

for each member of your pruned ensemble and note the spread in values. SloppyCell includes
a few functions to make this easier in some common cases. Ensembles.ensemble_trajs
will integrate a Network for a fixed set of times over all members of an ensemble.
Ensembles.traj_ensemble_quantiles will calculate quantiles over those integrations, to
show, for example, what the 95% confidence bounds are on the trajectory prediction. Sim-
ilarly, Ensembles.traj_ensemble_stats will return trajectories containing the mean and
standard deviation of each integration quantity over an ensemble.

2.10 Plotting

SloppyCell’s plotting functionality is built upon matplotlib [17], also known as pylab; a
nice tutorial is available at http://matplotlib.sourceforge.net/tutorial.html. Slop-
pyCell’s Plotting module adds several routines that are convenient for analyzing fits, en-
sembles, and Hessians. For example, Figure 1 shows a plot of the best fit for our example
model (Section 1) with no additional tweaking.

2.11 KeyedLists

Numerical algorithms are generally designed to work with arrays of values, while users don’t
want to remember which parameter was number 97. To solve both issues, SloppyCell uses a
custom data type called a KeyedList which has properties of both Python lists and dictio-
naries. Like a normal list, values can be accesses using [<index>] notation. Additionally,
each entry is associated with a key, so that values can be added and accessed using get and
set methods like a Python dictionary.

2.12 Input and Output

SloppyCell’s I0 module includes several functions to facilitate import and export of useful
representations of Networks.

I0.from_SBML_file and I0.to_SBML_file allow importing and exporting of SBML
files. (Note that SloppyCell will not preserve annotations of an SBML network that
has been imported.) I0.net_DOT_file generates dot files which can be fed to Graphviz
(http://www.graphviz.org/) to generate basic network diagrams as seen in Figure 6. Fi-
nally, I0.eqns_TeX_file will export a tex file that can be used with I¥TEXto generate
nicely-formatted equations. These are useful both for inclusion in publications and for de-
bugging models.

2.13 Miscellaneous Utilities

To conveniently save results for future analysis, you can use Utility.save and
Utility.load. Note that these rely on Python’s binary ‘pickle’ format, so there is a
slight danger that upgrades to Python or SloppyCell will render them unreadable. For

14

http://matplotlib.sourceforge.net/tutorial.html
http://www.graphviz.org/

EGFBindingReaction
boundEGFReceptor

‘ ‘NGP

fox

‘SosActivationByNGFReaction

Figure 6: Shown is a SloppyCell-generated network diagram for the growth-factor-signaling
model of Brown et al. [4]. Black ovals denote species and red boxes denote reactions between
them.

15

more robust but less space-efficient saving, dump results to text files using, for example,
scipy.io.write_array.

2.14 Parallelization

SloppyCell implements a relatively simple parallelization paradigm [18] over MPI, us-
ing the PyPar (http://sourceforge.net/projects/pypar/) interface. Two major tasks
have been parallelized. (1) If evaluating the cost of a Model involves integrating
several Networks, those integrations can be spread across several processors. (2) In
Dynamics.integrate_sensitivity, the integrations for different parameters can be dis-
tributed across processors. Parallel execution is enabled by a simple import:

import SloppyCell.ReactionNetworks.RunInParallel as Par.

Anything in the script beyond this import will be run only by the master, who can send com-
mands to the slaves. The slaves can be directly controlled using using methods in Par. For
example, Par.statement_to_all_workers ("print ’I am processor’, my_rank") will
cause each processor to print a message giving its rank.

3 Installation

3.1 Required Dependencies

Python version 2.4 or higher
Available from http://python.org/.

NumPy version 1.0.2 or higher
Available from http://scipy.org/

SciPy version 0.5.2 or higher
Available from http://scipy.org/

matplotlib version 0.90.0 or higher
Available from http://matplotlib.sourceforge.net/

3.2 Optional Dependencies

libSBML version 2.3.4
Available from http://www.sbml.org/software/libsbml/.
If libSBML is installed, SloppyCell will be able read and write files encoded in the
Systems Biology Markup Language [1]. See section 2.12.

IPython Available from http://ipython.scipy.org/.
[Python is a dramatic improvement over the standard python shell and we highly
recommended it for interactive work.

16

http://sourceforge.net/projects/pypar/
http://python.org/
http://scipy.org/
http://scipy.org/
http://matplotlib.sourceforge.net/
http://www.sbml.org/software/libsbml/
http://ipython.scipy.org/

C compiler For speed, SloppyCell by default generates C versions of the network equations,

and this requires a C compiler. If a C compiler is not installed, SloppyCell will run
with Python versions of the network equations, which may be up to a factor of 30
slower. This capability has been tested only with the compiler gcc, but it should work
with others.

Pypar Available from http://sourceforge.net/projects/pypar/.

With Pypar installed, SloppyCell can run several common calculations in parallel over
MPI. See section 2.14 (As of August 21, 2007 the alpha version of Pypar 2.0 is required
for compatibility with NumPy.)

3.3 On Linux

Installation on a Linux system should be straightforward, as Linux machines are generally
well-equipped with the proper compilers.

1. Install the required dependencies

2. Unpack the tarball containing the SloppyCell code.
(tar xzf SloppyCell-XXX.tar.gz)

3. Descend into the SloppyCell-XXX directory. (cd SloppyCell-XXX)

4. Run the installation script to build SloppyCell. (python setup.py build).
Depending on your system, this may fail due to difficulties with For-
tran compilation. The available Fortran compilers can be found with
python setup.py config _fc --help_fcompiler, and if you contact us we can help
with this step.

5. Run the installation script to install. (python setup.py install).

If you prefer to wuse SloppyCell from the current directory rather
than installing it elsewhere, use the —--install-1lib option,
python setup.py install --install-lib=.. . You will have to adjust your
PYTHONPATH environment variable to include the directory the SloppyCell directory
is contained within. This installation option is particularly convenient for staying
up-to-date with the CVS repository.

3.4 0OS X

Note that installation of libsbml with python bindings on Intel macs currently requires some
work-arounds. Hopefully these will be resolved soon by the libsbml maintainers. If you're
having difficulties, please contact us.

17

http://sourceforge.net/projects/pypar/

3.4.1 Pre-built binary

Binary mpkgs are available from the Sourceforge download site. These have been built against
the framework builds of Python available from http://www.python.org on OS X 10.4
(‘Tiger’).

3.4.2 From source code

Fortran compilers for OS X are available at http://hpc.sf.net. Once you've installed such
a compiler, follow the instructions for installing on Linux.

3.5 Windows

Installing gcc on Windows requires some effort, but is highly suggested as it will dramatically
speed up SloppyCell.

In our experience, the easiest way to get gcc is to install MinGW. To install it, run
MinGW-5.1.3.exe from http://sourceforge.net/projects/mingw/. Tell the installer you
want g77 and g++ in addition to the defaults.

Unfortunately, there is an issue with MinGW-5.1.3 that will cause compilation
problems. To fix them, you will need to find libgcc.a and run the following
command: ar dvs libgcc.a __main.o [19]. On our test system libgcc.a was in
c:\mingw\1lib\gcc\mingw32\3.4.2.

3.5.1 Pre-built binary
Pre-built binaries are available for Python 2.4 and Python 2.5.

3.5.2 From source code

Given that you installed g77 along during the MinGW install, you should be able to follow
the Linux install instructions.

3.6 Testing the Installation

The SloppyCell source code includes a large package of test routines. To access them:
download and unpack SloppyCell-XXX.tar.gz or SloppyCell-XXX.zip, descend into the
SloppyCell-XXX directory (cd SloppyCell-XXX), and run cd Testing; python test.py.
This will run an extensive series of tests, both with and without C-compilation.

18

http://www.python.org
http://hpc.sf.net
http://sourceforge.net/projects/mingw/

4

Troubleshooting

4.1 Failing Integrations

Optimization or ensemble construction may explore regions of parameter space for which the
model equations become very difficult to integrate, leading to many daeint exceptions being
raised. One possible solution is to check the ‘typical” values that are being assumed for each
variable, accessible via net.get_var_typical_vals (). These are used to help set the abso-
lute tolerances of the integrations, and if they are very different from the values the variable
actually attains, the inconsistency can cause problems. The solution is then to set them to
more reasonable values using net.set_var_typical_val (<variable id>, <value>).

References

1]

[5]

[6]

[7]

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems biology
markup language (SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics 19:524-531. back

Lutz M, Ascher D (2003) Learning Python. O’Reilly, 2nd edition. back

Brown KS, Sethna JP (2003) Statistical mechanical approaches to models with many
poorly known parameters. Phys Rev E 68:021904. back

Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, et al. (2004) The statistical mechan-
ics of complex signaling networks: nerve growth factor signaling. Phys Biol 1:184-195.
back

Frederiksen SL, Jacobsen KW, Brown KS, Sethna JP (2004) Bayesian ensemble ap-
proach to error estimation of interatomic potentials. Phys Rev Lett 93:165501. back

Waterfall JJ, Casey FP, Gutenkunst RN, Brown KS, Myers CR, et al. (2006) Sloppy-
model universality class and the Vandermonde matrix. Phys Rev Lett 97:150601. back

Casey FP, Baird D, Feng QQ, Gutenkunst RN, Waterfall JJ, et al. (2007) Optimal exper-
imental design in an epidermal growth factor receptor signalling and down-regulation
model. IET Syst Biol 1:190-202. arXiv:q-bio/0610024. back

Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, et al. (2007) Universally
sloppy parameter sensitivities in systems biology. PLoS Comput Biol In press, arXiv:q-
bio.QM/0701039. back

Gutenkunst RN, Casey FP, Waterfall JJ, Myers CR, Sethna JP (2007) Extracting falsi-
fiable predictions from sloppy models. In: Stolovitsky G, Califano A, Collins J, editors,
Reverse Engineering Biological Networks: Opportunities and Challenges in Compu-

tational Methods for Pathway Inference. New York Academy of Sciences. In press,
arXiv:0704.3049. back

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gutenkunst RN (2007) Sloppiness, Modeling, and Evolution in Biochemical Networks.
Ph.D. thesis, Cornell University. back

Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U (2003) Identification of nu-
cleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling.
Proc Natl Acad Sci USA 100:1028-1033. back

Zi 7, Klipp E (2006) SBML-PET: a Systems Biology Markup Language-based parameter
estimation tool. Bioinformatics 22:2704-2705. back

Gutenkunst RN, Atlas JC, Kuczenski RS, Casey FP, Waterfall JJ, et al. Falsifiable
modeling of biochemical networks with SloppyCell. In preparation. back

Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing.
Comput Sci Eng 9:21-29. back

Waterfall JJ (2006) Universality in Multiparameter Fitting: Sloppy Models. Ph.D.
thesis, Cornell University. back

Chib S, Greenberg E (1989) Understanding the Metropolis-Hastings algorithm. Amer
Statistician 49:327-335. back

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90-95.
back

Myers CR, Gutenkunst RN, Sethna JP (2007) Python unleashed on systems biology.
Comput Sci Eng 9:34-37. arXiv:0704.3259. back

Smith D (2005). Re: [Mingw-users| - EH_ FRAME_BEGIN_ - a simpler demonstration
of the problem. Mingw-users mailing list, March 13. back

20

	1 JAK-STAT Example
	1.1 Other Examples

	2 Overview
	2.1 Working Interactively
	2.2 Accessing SloppyCell
	2.3 Networks
	2.4 Dynamics
	2.5 Models
	2.5.1 Priors

	2.6 Experiments
	2.6.1 Scale Factors
	2.6.2 Data Format

	2.7 Optimization
	2.8 Cost and Residual Derivatives
	2.9 Ensembles
	2.9.1 Assessing and Speeding Convergence
	2.9.2 Predicting from an Ensemble

	2.10 Plotting
	2.11 KeyedLists
	2.12 Input and Output
	2.13 Miscellaneous Utilities
	2.14 Parallelization

	3 Installation
	3.1 Required Dependencies
	3.2 Optional Dependencies
	3.3 On Linux
	3.4 OS X
	3.4.1 Pre-built binary
	3.4.2 From source code

	3.5 Windows
	3.5.1 Pre-built binary
	3.5.2 From source code

	3.6 Testing the Installation

	4 Troubleshooting
	4.1 Failing Integrations

